## Subject programme



- 1. Subject name / subject module: Intelligent Decision Systems
- 2. Lecture language: English
- **3.** The location of the subject in study plans:
  - Area or areas of the studies: Computer Control Systems Engineering
  - Degree of the studies: 2nd degree studies
  - Field or fields (implementation of effects standard): Mechatronics
- **4.** Supervision of subject implementation:
  - The Institute / Another unit: Institute of Informatics and Mechatronics
  - The person responsible for the subject: Shakhovska Nataliya, dr hab. inż.
  - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method:

| Teaching activities with the tutor |                      |     |                  |  |     | Total |         |      |         |      |      |
|------------------------------------|----------------------|-----|------------------|--|-----|-------|---------|------|---------|------|------|
| Mode                               | Form of classes      |     |                  |  |     |       |         |      |         |      |      |
| of study                           | Lecture              | SOW | ECTS             |  | SOW | ECTS  | <br>SOW | ECTS | <br>SOW | ECTS | ECTS |
| Full-time<br>studies               | 24                   | 51  | 2                |  |     |       |         |      |         |      | 2    |
| Part-time<br>studies               |                      |     | 5                |  |     |       |         |      |         |      | 5    |
| Credit<br>rigor                    | Credit Exam<br>rigor |     | Graded assigment |  |     |       |         |      |         |      |      |

## 6. Student workload – ECTS credits balance

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

| Activity<br>(please specify relevant work for the subject)                        | Hourly student<br>workload (full-time<br>studies/part-time<br>studies) |  |  |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| Participation in lectures                                                         | 24                                                                     |  |  |
| Participation in laboratory classes                                               | -                                                                      |  |  |
| Independent study of the subject                                                  | 34                                                                     |  |  |
| Preparation to a final test                                                       | 15                                                                     |  |  |
| Participation in an exam / graded assignment                                      | 2                                                                      |  |  |
| Total student workload (TSW)                                                      | 75                                                                     |  |  |
| ECTS credits                                                                      | 3                                                                      |  |  |
| * Student's workload related to practical forms                                   | 0                                                                      |  |  |
| Student's workload in classes requiring direct participation of academic teachers | 24                                                                     |  |  |

**7.** Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

- Recommended admission requirements none.
- Recommended duration of the subject is taken from the course plan.
- 8. Specific learning outcomes knowledge, skills and social competence:

| Specific learning outcomes for the subject |                                                                                                                                                                                                                                                                                                                      |         | Tooching              | Methods for testing of                     |  |  |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|--------------------------------------------|--|--|--|
| Outcome<br>symbol                          | Outcome description                                                                                                                                                                                                                                                                                                  | Form    | method                | (checking, assessing)<br>learning outcomes |  |  |  |
| Knowledge                                  |                                                                                                                                                                                                                                                                                                                      |         |                       |                                            |  |  |  |
| K_W07                                      | To know the good practices of implementing group web engineering projects<br>that ensure efficiency, speed, correctness and security. To know the current<br>development trends of Internet systems. To know the rules of preparing<br>computer presentations and their presentation in a public forum.              | Lecture | Expository<br>methods | Final test, Student<br>learning activities |  |  |  |
| Skills                                     |                                                                                                                                                                                                                                                                                                                      |         |                       |                                            |  |  |  |
| K_U02                                      | To be able to solve an advanced engineering task with research elements. To<br>can develop a project for a selected problem / task, and develop its detailed<br>documentation. To can maintain a schedule for the implementation of<br>individual project phases, define the roles of individual people in the team. | Lecture | Expository<br>methods | Final test, Student<br>learning activities |  |  |  |
| Social competence                          |                                                                                                                                                                                                                                                                                                                      |         |                       |                                            |  |  |  |
| К_К02                                      | The student is able to present the basics of knowledge engineering, the oncept<br>of building expert systems, knowledge representation models, various<br>inference strategies and declarative programming techniques.                                                                                               | Lecture | Expository<br>methods | Final test, Student<br>learning activities |  |  |  |

## Subject programme

Students can use appropriate inference methods when solving IT problems, also using incomplete, uncertain and imprecise information.



## 9. Assessment rules / criteria for each form of education and individual grades:

| Activity           | Grades                | Calculation         | To final |
|--------------------|-----------------------|---------------------|----------|
| Final test/project | bdb (5)               | 5*80%               | 4,0      |
| Attendance         | on 70% of all classes | 0,70 * 5 -> 3,5*20% | 0,7      |
| Final result       |                       |                     | 4,70     |

| 0 - 3.00    | ndst | 4.01 – 4.50 | db  |
|-------------|------|-------------|-----|
| 3.01 – 3.50 | dst  | 4.51 – 4.7  | db+ |
| 3.51 - 4.00 | dst+ | 4.71 – 5.0  | bdb |

- **10.** The learning contents with the form of the class activities on which they are carried out (Lecture)
  - 1. Introduction to Decision Support Systems;
  - 2. Decision-making Models;
  - 3. Decision-making Strategies;
  - 4. Expert Systems;
  - 5. Data mining, OLAP;
  - 6. Multi-dimensional data;
  - 7. Framework;
  - 8. Scripts;
  - 9. Semantic networks;
  - 10. Ontologies.
- 11. Required teaching aids
  - a. Lecture multimedia projector
  - b. Laboratory classes specialist laboratory
- 12. Literature:
  - a. Basic literature:

Rutkowski Leszek, Metody i techniki sztucznej inteligencji, Wydawnictwo Naukowe PWN, Warszawa, 2017

- Supplementary literature:
  Clocksin W. F., Mellish C. S., Prolog. Programowanie, Helion, 2003
- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.).
- **14.** Teachers implementing particular forms of education:

| Form of education     | Name and surname                  |
|-----------------------|-----------------------------------|
| 1. Lecture            | Shakhovska Nataliya, dr hab. inż. |
| 2. Laboratory classes |                                   |